706,190 research outputs found

    Developing a comprehensive framework for multimodal feature extraction

    Full text link
    Feature extraction is a critical component of many applied data science workflows. In recent years, rapid advances in artificial intelligence and machine learning have led to an explosion of feature extraction tools and services that allow data scientists to cheaply and effectively annotate their data along a vast array of dimensions---ranging from detecting faces in images to analyzing the sentiment expressed in coherent text. Unfortunately, the proliferation of powerful feature extraction services has been mirrored by a corresponding expansion in the number of distinct interfaces to feature extraction services. In a world where nearly every new service has its own API, documentation, and/or client library, data scientists who need to combine diverse features obtained from multiple sources are often forced to write and maintain ever more elaborate feature extraction pipelines. To address this challenge, we introduce a new open-source framework for comprehensive multimodal feature extraction. Pliers is an open-source Python package that supports standardized annotation of diverse data types (video, images, audio, and text), and is expressly with both ease-of-use and extensibility in mind. Users can apply a wide range of pre-existing feature extraction tools to their data in just a few lines of Python code, and can also easily add their own custom extractors by writing modular classes. A graph-based API enables rapid development of complex feature extraction pipelines that output results in a single, standardized format. We describe the package's architecture, detail its major advantages over previous feature extraction toolboxes, and use a sample application to a large functional MRI dataset to illustrate how pliers can significantly reduce the time and effort required to construct sophisticated feature extraction workflows while increasing code clarity and maintainability

    Nonparametric Feature Extraction from Dendrograms

    Full text link
    We propose feature extraction from dendrograms in a nonparametric way. The Minimax distance measures correspond to building a dendrogram with single linkage criterion, with defining specific forms of a level function and a distance function over that. Therefore, we extend this method to arbitrary dendrograms. We develop a generalized framework wherein different distance measures can be inferred from different types of dendrograms, level functions and distance functions. Via an appropriate embedding, we compute a vector-based representation of the inferred distances, in order to enable many numerical machine learning algorithms to employ such distances. Then, to address the model selection problem, we study the aggregation of different dendrogram-based distances respectively in solution space and in representation space in the spirit of deep representations. In the first approach, for example for the clustering problem, we build a graph with positive and negative edge weights according to the consistency of the clustering labels of different objects among different solutions, in the context of ensemble methods. Then, we use an efficient variant of correlation clustering to produce the final clusters. In the second approach, we investigate the sequential combination of different distances and features sequentially in the spirit of multi-layered architectures to obtain the final features. Finally, we demonstrate the effectiveness of our approach via several numerical studies

    Feature Extraction and Classification of Automatically Segmented Lung Lesion Using Improved Toboggan Algorithm

    Full text link
    The accurate detection of lung lesions from computed tomography (CT) scans is essential for clinical diagnosis. It provides valuable information for treatment of lung cancer. However, the process is exigent to achieve a fully automatic lesion detection. Here, a novel segmentation algorithm is proposed, it's an improved toboggan algorithm with a three-step framework, which includes automatic seed point selection, multi-constraints lesion extraction and the lesion refinement. Then, the features like local binary pattern (LBP), wavelet, contourlet, grey level co-occurence matrix (GLCM) are applied to each region of interest of the segmented lung lesion image to extract the texture features such as contrast, homogeneity, energy, entropy and statistical extraction like mean, variance, standard deviation, convolution of modulated and normal frequencies. Finally, support vector machine (SVM) and K-nearest neighbour (KNN) classifiers are applied to classify the abnormal region based on the performance of the extracted features and their performance is been compared. The accuracy of 97.8% is been obtained by using SVM classifier when compared to KNN classifier. This approach does not require any human interaction for lesion detection. Thus, the improved toboggan algorithm can achieve precise lung lesion segmentation in CT images. The features extracted also helps to classify the lesion region of lungs efficiently

    Randomized Dimensionality Reduction for k-means Clustering

    Full text link
    We study the topic of dimensionality reduction for kk-means clustering. Dimensionality reduction encompasses the union of two approaches: \emph{feature selection} and \emph{feature extraction}. A feature selection based algorithm for kk-means clustering selects a small subset of the input features and then applies kk-means clustering on the selected features. A feature extraction based algorithm for kk-means clustering constructs a small set of new artificial features and then applies kk-means clustering on the constructed features. Despite the significance of kk-means clustering as well as the wealth of heuristic methods addressing it, provably accurate feature selection methods for kk-means clustering are not known. On the other hand, two provably accurate feature extraction methods for kk-means clustering are known in the literature; one is based on random projections and the other is based on the singular value decomposition (SVD). This paper makes further progress towards a better understanding of dimensionality reduction for kk-means clustering. Namely, we present the first provably accurate feature selection method for kk-means clustering and, in addition, we present two feature extraction methods. The first feature extraction method is based on random projections and it improves upon the existing results in terms of time complexity and number of features needed to be extracted. The second feature extraction method is based on fast approximate SVD factorizations and it also improves upon the existing results in terms of time complexity. The proposed algorithms are randomized and provide constant-factor approximation guarantees with respect to the optimal kk-means objective value.Comment: IEEE Transactions on Information Theory, to appea

    Face Detection with Effective Feature Extraction

    Full text link
    There is an abundant literature on face detection due to its important role in many vision applications. Since Viola and Jones proposed the first real-time AdaBoost based face detector, Haar-like features have been adopted as the method of choice for frontal face detection. In this work, we show that simple features other than Haar-like features can also be applied for training an effective face detector. Since, single feature is not discriminative enough to separate faces from difficult non-faces, we further improve the generalization performance of our simple features by introducing feature co-occurrences. We demonstrate that our proposed features yield a performance improvement compared to Haar-like features. In addition, our findings indicate that features play a crucial role in the ability of the system to generalize.Comment: 7 pages. Conference version published in Asian Conf. Comp. Vision 201
    • …
    corecore